

Centro Nazionale di Alta Tecnologia in Oftalmologia

Excellence Eye Research Centre

Certified as Member of EVICR.net

University "G. d'Annunzio" Chieti-Pescara Head. Prof. Leonardo Mastropasqua

LENTICULE ADDITION: TESSUTI DEL FUTURO

Mario Nubile

Leonardo Mastropasqua

"G. d'Annunzio" University of Chieti – Pescara National High-Tech Center (CNAT) Italian School of Robotic Surgery in Ophthalmology

The premise: Small Incision Lenticule Extraction (SMILE)

A Reversible procedure

The stromal lenticule extracted following ReLEx maintain keratocyte viability and overall collagen structural integrity in pre- and post- cryopreserved tissue samples.

Removed tissue is still vital Extracted lenticule can be reimplanted

«The potential option of stromal lenticule storage after ReLEx offers patients the **unique opportunity of bank their tissue** in case of future need, **or to donate their tissues** to others in need».

Refractive Lenticule Re-Implantation after Myopic ReLEx: A Feasibility Study of Stromal Restoration after Refractive Surgery in a Rabbit Model

Romesb I. Angunawela,^{1,2,5} Andri K. Riau,^{1,5} Sbyam S. Chaurasia,¹ Donald T. Tan,^{1,2,3} and Jodbbir S. Mebta^{1,2,3,4}

2012

Animal model

Lenticule banking?

A reversible procedure: REMOVED TISSUE IS STILL VITAL

The stromal lenticule extracted following ReLEx maintain keratocyte viability and overall collagen structural integrity in pre- and post- cryopreserved tissue samples.

«The potential option of **STROMAL LENTICULE STORAGE AFTER RELEX/SMILE** offers patients the unique opportunity of **bank** their tissue in case of future need, **or to donate** their tissues to others in need».

Risk Evaluation of Human Corneal Stromal Lenticules From SMILE for Reuse

Yanfeng Shang, MD, Yu Li, MD, PhD, Zhiqun Wang, MD, Xuguang Sun, MD, PhD, and Fengju Zhang, MD, PhD

Refractive 2020 Surgery

Preservation of corneal stromal lenticule: review

*Image courtesy of Miracles In Sight Eye Bank (Winston-Salem, North Carolina, U.S.A

Martina Nemcokova () · Jakub Dite · Yun Min Klimesova · Magdalena Netukova · Pavel Studeny

Cell tissue bank - 2021

Experiment-Based Validation of Corneal Lenticule Banking in a Health Authority-Licensed Facility

Andri K. Riau 😳 🖂 Kenny P.Y. Boey, Nur Zahirah Binte M. Yusoff, Tze-Wei Goh, Gary H.F. Yam, Kin F. Tang, Catherine S.H. Phua, Hui-Jun Chen, Yoke F. Chiew, Yu-Chi Liu, and Jodhbir S. Mehta 🖂

Hurjun chen, toke F. Chiew, tu-chi Liu, and Jodnbir S. Menta [

Journal of Tissue Engineering 2022

Banking of corneal stromal lenticules: a risk-analysis assessment with the EuroGTP II interactive tool

Esteve Trias · Paola Gallon · Stefano Ferrari · Ana Rita Piteira · Jaime Tabera · Ricardo P. Casaroli-Marano · Mohit Parekh · Alessandro Ruzza · Antonella Franch · Diego Ponzin Cell tissue bank - 2020

Stromal lenticules as tectonic patch grafts

Surgical treatment of corneal dermoid by using intrastromal lenticule obtained from small-incision International Ophthalmology lenticule extraction 2020

The international Journal of Clinical Ophthalmology and Visual Sciences

Qi Wan 1 2, Jing Tang 3, Yu Han 1, Hongguan Ye 1

Treatment of Mooren's ulcer coexisting with a pterygium using an intrastromal lenticule obtained from small-incision lenticule extraction: case report and literature review

Na He,1# Wei Song,2# and Ying Gao1

Lenticules from MYOPIC SMILE refractive procedures can be used for **Therapeutical purposes**

Case series: Use of stromal lenticule as patch graft

American Journal 2018 Yong Ju Song,^a Sumi Kim,^b and Gil Joong Yoon^{C,*} of Ophthalmology Case Reports

Bullous keratopathy

Stromal lenticules - addition in corneal diseases

Stromal Lenticule Addition Keratoplasty with MYOPIC SMILE lenticule to re-shape stromal loss in post-HSV stromal scar

Patch graft in glaucoma drainage implant surgery

Table 1

Advantages and disadvantages of sclera, dura, pericardium and allogeneic cornea.

Advantages	Disadvantages
Sciera	
1. Most affordable	 Can be of variable quality May need thinning (to prevent Dellen) No guarantee of sterility Variably available on an urgent basis secondary to limited shelf life Could be seen through the conjunctiva after surgery
Dura	
 Longest track record of Use among nonscleral Patch materials Sterile Shelf life±5 yr Easily handled Pericardium 	1. Most expensive material
 Not as costly as Dura Sterile Shelf life±5 years Easily handled Allogeneic comea 	 Shorter track record of use vs Dura Somewhat variable thickness
 A better cosmetic appearance vs sclera 	1. Difficult to obtain
	2. Somewhat variable thickness

Wang Y et al. Medicine 2019-2020

Refractive error correction with lenticule implantation

lenticule implantation

Increase of anterior corneal curvature

Correction of positive ametropia

Aphakia (first case)

- Pradhan KR, 2013
- Studer HP, 2015

Hyperopia

- Ganesh S, 2014
- Sun L, 2015
- Liu, 2015
- Damgaard, 2017
- Williams GP, 2018
- Moshirfar, 2018
- Zhang, 2021
- Brar, 2022
- Liu, 2022

Presbyopia

- Presbyiopic monovision -
 - Lim CH, 2013
- PEARL Jacob, 2017
- Liu*,* 2018

Astigmatism

- Damgaard, 2019
- Stodulka, 2020

Implantation in human: HYPEROPIA

Small incision lenticule extraction (SMILE) combined with allogeneic intrastromal lenticule inlay for hyperopia with astigmatism

Jing Zhang ^{1,2,3}, Yuehua Zhou ^{1,2,3}

PLOS ONE 2021

The hyperopic eye with astigmatism was first treated with SMILE to correct astigmatism; then a lenticule was extracted from a donor myopic eye and subsequently implanted

Femtosecond Intrastromal Lenticule Implantation (FILI) for Management of

Moderate to High Hyperopia: 5-Year Outcomes

Sheetal Brar, MS, Sri Ganesh, MS, DNB, FRCS, Skanda Samak Sriganesh, AS, and Hemali Bhavsar, MS

Refractive 2022

«The mean spherical equivalent reduced significantly from +5.50 ± 1.96 to +0.66 ± 1.17 diopters»

Toric Lenticule Implantation for Correction of Hyperopia and Astigmatism Following Small Incision Lenticule Intrastromal Keratoplasty With the Triple Marking Method 2022

Refractive 2022 Surgery

Shengtao Liu, MD, PhD, Xlaoxue Zhang, MM, and Xingtao Zhou, MD, PhD

Comparison of Optical Zone Decentration Following FS-LIKE and SMI-LIKE for Correcting Hyperopia

Shengtao Liu, MD, PhD, Xiaoxue Zhang, MM, Lanhui Yu, MM, Meiyan Li, MD, PhD, and Xingtao Zhou, MD, PhD

Efficacy and safety of small-incision corneal intrastromal lenticule implantation for hyperopia correction: a systematic review and meta-analysis Front in Med 2024

Yue Wang¹, Jingjing Zheng¹, Zuofeng Guo¹ and Xuejun Fang^{1,2*}

¹Ophthalmology, Liaoning Aier Eye Hospital, Shenyang, China, ²AIER School of Ophthalmology, Central South University, Changsha, China

Conclusion: Small-incision intrastromal lenticule implantation may be an effective solution for correcting hyperopia. The effect of improved vision is significant, but further exploration is needed for changes in corneal biomechanics and long-term safety.

	Post	operativ	ve.	Preo	perative	÷.		Mean Difference	e	Mean Differ	ence	
Study or Subgroup	Mean	SD	Total	Mean	SD 1	lotal.	Weight	IV, Fixed, 95%	5 CI	IV, Fixed, 95	Ph CI	
Jiawei Wu 2020	0.33	0.11	10	6.95	1.82	10	7.4%	-6.62 [-7.75, -5.	491			
Jie Hou 2022	0.52	0.82	31	5.95	2.1	31	14.9%	-5.43 [-6.22, -4.	.64)	-		
ling Zhang 2021	-0.75	0.79	24	7.42	3.12	24	5.7%	-8.17 [-9.46, -B.	1961			
Ling Sun 2016	-1	0.91	0	4.35	1.92		2.1%	-5.35 -7.21,-3	49	-		
Mengrei Hu 2021 Meng Li 2017	-0.0	1.46	12	3.90	1.07	10	4.1%	-4.00 [-0.27, -3.	471			
Sheetsi Brar 2022	0.03	1.10	42	5.5	1.98	42	10.7%	-4.841-5.52 -4	161 -	-		
Shenatao Liu 2021	-0.6	1.2	14	5.64	1.45	14	9.7%	-6.14 1-7.135	161			
Shengtao Liu 2022	-0.35	0.27	.6	6.23	1.34	5	6.6%	-6.58 -7.78, -5.	381			
Yuehua Zhou 2015	-0.63	0.94	37	6.84	2.79	37	10.5%	-7.47 [-8.42, -6.	.62)			
Total (95% CI)			190			190	100.0%	-5.73 [-6.04, -5.	42] 🔶			
Heterogeneity: Chi#= 5	50.19, 0	1 = 9 P	< 0.00	001); P	= 82%			CONTRACTOR STATE	100	e 0	1	
Come and							Risk	Difference		Risk Differe	nce	
Study or Subgrou	p R	isk Dif	feren	ce	SE	Weig	aht IV.	Fixed, 95% CI		IV, Fixed, 95	% CI	
Jiawei Wu 2020			1	.9 0.	3086	15.	2% 0.9	0 [0.30, 1.50]			-	
Ling Sun 2018			1	1.2 0.	4264	8.0	0% 0.2	0 [-0.64, 1.04]			-	
Meng Li 2017			1	0.3 0.	3086	15.3	2% 0.3	0 1-0.30, 0.90]				_
Sheetal Brar 2022				0.5 0.	1534	61.0	6% 0.5	0 [0.20, 0.80]			-	-
Shengtao Liu 202	1		0.57	14 0.	2626		1	lot estimable				
Total (95% CI)						100.	0% 0.5	1 [0.27, 0.74]			-	
Heterogeneity: Ch Test for overall eff	P = 2.5 ect: Z =	59, df = = 4.21 (3 (P = (P ≺ 0	= 0.46) 0001)	; l [#] = 09	%			-1 -0.5	0	0.5	
,							Risk Diff	erence		Risk Difference	9	
Study or Subgroup	Ris	sk Diffe	rence		E We	ight	IV, Fixed	i, 95% Cl	r	V. Fixed, 95% C	1	
Jie Hou 2022		(0.7742	0.178	31 33	.5%	0.77 (0.	43, 1.12]				٠
Ling Sun 2016			0.8	0.428	64 5	.8%	0.80 [-0.	04, 1.64]		2		*
Sheetal Brar 2022		(0.7143	0.153	4 45	2%	0.71 (0.	41, 1.01]			-	-
Shengtao Liu 2021		(0.7143	0.26	26 15	4%	0.71 [0.	20, 1.23]		1		-
					100	.0%	0.74 [0.	54, 0.941				-
Total (95% CI)												
Total (95% CI) Heterogeneity: Chi	*= 0.00	9. df = 3	(P = 0	99) P	= 0%	200550			1			

FIGURE 3

(A) Forest plot showing the weighted mean difference of postoperative SE and preoperative SE. (B) Forest plot showing the risk difference of postoperative and expected refractive error within the range of ±0.5D. (C) Forest plot showing the risk difference of postoperative and expected refractive error within the range of ±1.D.

Correction of PRESBYOPIA

Biological corneal inlay for presbyopia derived from small incision lenticule extraction (SMILE)

<u>Yu-Chi Liu</u>,^{1,2,3} Ericia Pei Wen Teo,¹ Heng Pei Ang,¹ Xin Yi Seah,¹ Nyein Chan Lwin,¹ Gary Hin Fai Yam,¹ and Jodhbir S. Mehta^{X1,2,3,4} SCIENTIFIC REPORTS²⁰¹⁸

Central Corneal **power change** and aberration induction

Convex shaped lenticule (small diameter) hyper-prolate corneal shape, reduced corneal asphericity

Preliminary Evidence of Successful Near Vision Enhancement With a New Technique: PrEsbyopic 2017 Allogenic Refractive Lenticule (PEARL) Corneal Inlay Using a SMILE Lenticule

Soosan Jacob, Dhivya Ashok Kumar, Amar Agarwal, Athiya Agarwal, Ramalingam Aravind, A I Saijimol

Journal of EuCornea

👂 search 🍯 🖬 🛅 斎

Corneal Re-shaping in ectasia

Editorial

Vol. 11,, Issue 3, 2022 · February 27, 2023 BST

Corneal "re-shaping" by lenticule implantation in keratoconus: The role of tissue addition

Mario Nubile, Leonardo Mastropasqua

SLAK	++ (-5.1D)	++ (+3.8D)	47	1.4	Central only	++	1	
Bowman's Tx	++ (-4.8D)	++ (+3.6D)	21	1	Both	-	1	SLAK
CAIRS	+ (-2.8D)	++ (+4.1D)	0	2	Both	++	1 (rim)	
Donut Lenticule	++ (-3.4D)	+ (+1.7D)	18	3.5	Central only	+++	0 (SMILE lentic)	

Lenticule implantation for keratoconus: emerging trend

Studies	Studies Follow-up	Stage of	Clinical outcomes						
time	keratoconus	Time	UCVA (LogMAR)	BCVA (LogMAR)	AK1 (D)	AK2 (D)	CCT (µm)	Adverse events	
Nubile et al.	6 months	Grades 3-4	Preop.	N.A.	1.07±0.18	Sim-K: 5	9.63±7.58	408±59	Mild and transient stromal edema
2021(*)		Postop.	N.A.	0.67±0.22	Sim-K: 57.19±7.32		475±68		
Doroodgar	1 year	N.A.	Preop.	N.A.	0.70±0.17	Mean K 5	Mean K 54.68±2.77		Stromal collagen edema with no
et al., 2020 ^{pa}		Postop.	N.A.	0.49±0.12	Mean K 5	1.95±2.21	475±41	inflammation	
Almodin	1 year	Grade 4	Preop.	CF	N.A.	65.90	57.17	245	Mild and transient stromal edema
et al., 2018 ^{paj}		Postop.	CF/2 m	N.A.	61.82	60.02	639		
Wei et al.,	5 years	Grade 23	Preop.	N.A.	1.00±0.19	58.54±2.47	51.60±1.79	434±14	Mild and transient stromal edema
2022[13]		Postop.	N.A.	0.48±0.13	57.24±2.71	50.11±2.06	610±27		
Semiz et al.,	3 years	Grade 2-3	Preop.	1.10±0.17	0.86±0.22	63.53±1.40	56.25±0.94	399±13	Minimal edema, no inflammation or
2022(12)		Postop.	0.64±0.11	0.47±0.19	57.88±0.96	53.71±0.68	482±8	rejection	
Pedrotti et al.,	Pedrotti <i>et al.,</i> 1 year 2022 ^[u]	Grades 3-4	Preop.	N.A.	0.49	57.59±5.69	51.00±6.10	431±68	Perforation of the anterior comeal surface
2022[13]			Postop.	N.A.	0.47	59.29±6.54	52.98±8.83	600±71	resulting in secondary leucoma
Jadidi et al.,	1 year	sar N.A.	Preop.	0.62±0.39	N.A.	47.58±5.36	43.88±4.17	N.A.	No intraoperational or postoperational
2018[14]			Postop.	0.18±0.09	N.A.	46.70±4.18	43.58±1.93	N.A.	complications reported
Ganesh	190 days	Grade 1-3	Preop.	1.06±0.48	0.51±0.20	Mean K 5	3.35±6.90	444±26	No adverse events reported
et al., 2015 ^[7]	et al., 2015 ^[7]		Postop.	0.38±0.27	0.20±0.24	Mean K 48.93±8.10		463±27	
Mastropasqua	6 months	Grade 3-4	Preop.	1.58±0.36	1.07±0.17	Mean K 5	7.98±4.14	N.A.	Transient haze formation
et al., 2018/14			Postop.	1.22±0.37	0.70±0.23	Mean K 52.83±4.23		N.A.	
Pradhan	1 year	N.A.	Preop.	OF	0.60	64.08	N.A.	N.A.	No complications reported
et al., 201907			Postop.	0.60	0.30	56.74	N.A.	N.A.	
Alió et al.,	1 year	Grade 4	Preop.	0,79	0.54	56.83 (47 90-65.40) 55.25 (46.50-61.80)		456	Limited anterior stromal incision tear during
2019 ^[18]			Postop.	0.60	0.42			536	the implantation; scattered haze formation
Lei et al., 2022 ^[10]	7 months	Grade 4	Preop. Postop.	CF/30 cm 0.82	N.A. N.A.	76.40 68.50	74.80 65.20	302 N.A.	Mild and transient stromal edema

Preop: Pre-operation; Post-operation; UCVA: Uncorrected visual acuity; BCVA: Best corrected visual acuity; AK1: Anterior steep keratometry; AK2: Anterior flat keratometry; Sirs-K: Simulated keratometry; CCT: Central correct hickness; PCT: Peripheral correct hickness; CF: Counting fingers; D: Diopters

Lenticule addition keratoplasty for the treatment of keratoconus: A systematic review and critical considerations Liu, Yanling et al. IJO 2024

The Rich Promise of Lenticule Transplantation in Keratoconus

A brief history of stromal lenticule addition keratoplasty.

BY LEONARDO MASTROPASQUA, MD; AND MARIO NUBILE, MD

CRST 2019

Conclusion The implantation of modified hyperopic-shaped intra-corneal stromal lentoid is a feasible and reproducible technique for achieving central corneal flattening while increasing thickness. Whether

Mastropasqua L, Nubile M.

Figure 1. Drawing depicting the SLAK procedure: The negative meniscus-shaped lenticule is implanted intrastromally to improve the geometrical quality of keratoconic corneas.

Figure 2. SLAK in advanced keratoconus: The stromal interface transparency was stable over 18 months of follow-up (left to right).

WHAT IS SLAK?

Stromal Lenticule Addition Keratoplasty entails implanting a negative meniscus-shaped lenticule that is thinner in the center and thicker in the periphery—the geometric opposite of a myopic lenticule—to reshape and stabilize the corneas in eyes with progressive keratoconus.

The basic idea of SLAK surgery is to implant the lenticules intrastromally in order to improve the geometrical quality of pathological corneas affected by keratoconus.

THERAPEUTIC REFRACTIVE SURGERY

SLAK

Femtosecond Laser–Assisted Stromal Lenticule Addition Keratoplasty for the Treatment of Advanced Keratoconus: A Preliminary Study

Leonardo Mastropasqua, MD; Mario Nubile, MD, PhD; Niccolò Salgari, MD; Rodolfo Mastropasqua, MD

Extended follow-up results (60 months)

In Vivo Confocal Microscopy of Stromal Lenticule Addition Keratoplasty for Advanced Keratoconus

Leonardo Mastropasqua, MD; Niccolò Salgari, MD; Erminia D'Ugo, MD; Manuela Lanzini, MD; Jorge L. Alió del Barrio, MD, PhD; Jorge L. Alió, MD, PhD; Beatrice Cochener, MD; Mario Nubile, MD, PhD

Figure A. Anterior and posterior lenticule interfaces appeared hyperreflective at 1 week (A and I, respectively) with presence of cellular and matrix debris. Reflectivity gradually decreased over time (B and J at 1 month; C and K at 3 months) but was still noticeable at 12 months (D and LI. IE) Edema with reduced keratocyte density in lenticule stroma was observed at 1 week. (F) At 1 month, edema subsided but keratocyte nuclei still appeared reduced in number and altered in morphology. Cell density gradually increased and morphology improved over time (G: 3 months) but nuclear shape still appeared irregular at 12 months (H). (Caliper is 100 µm.)

TABLE 1 Mean Subbasal Nerve Density (mm/mm²), Mean Keratocyte Density (cell/mm²), and Relative Donor-Recipient Interface Reflectivity

		Keratocy	te Density	Relative Reflectivity		
Time	Subbasal Nerve Density	Anterior Stroma	Posterior Stroma	Anterior Interface	Posterior Interface	
Preoperative	13 ± 3	760 ± 115	583 ± 85	-		
1 week	4 ± 2	663 ± 98	450 ± 90	46.3 ± 18.1	48.6 ± 20.1	
1 month	3 ± 2	699 ± 86	485 ± 97	42.4 ± 15.0	42.1 ± 18.2	
3 months	11 ± 2	730 ± 93	505 ± 87	25.6 ± 16.1	28.8 ± 13.0	
6 months	12 ± 5	724 ± 107	531 ± 71	25.3 ± 14.3	29.0 ± 15.1	
12 months	12 ± 2	748 ± 103	567 ± 73	24.8 ± 10.2	23.9 ± 14.0	

SLAK:

Mild wound healing reaction, stable interface reflectivity, absence of immune stromal rejection

Figure 2. Relative reflectivity level of the anterior and posterior stromal interfaces between donor and recipient.

CONCLUSIONS: Stromal lenticule addition keratoplasty produces transitory nerve plexus density reduction and minor inflammatory reaction that rapidly decreases during the first month. Donor-recipient interface reflectivity is comparable to a femtosecond laser refractive procedure with no sign of stromal opacification or stromal rejection in 1 year of follow-up.

Epithelial and stromal remodelling following femtosecond laser–assisted stromal lenticule addition keratoplasty (SLAK) for keratoconus scientific reports 2021

Mario Nubile¹, Niccolò Salgari¹⁵³, Jodhbir S. Mehta², Roberta Calienno¹, Emanuele Erroi¹, Jessica Bondi¹, Manuela Lanzini¹, Yu-Chi Liu² & Leonardo Mastropasqua¹

Intrastromal lenticules implantation in SLAK promotes corneal reshaping, characterized by central flattening and both stromal thickening and epithelial thickness restoration.

#1.42

Epithelial thickness

41-42

SLAK in Post-SMILE Ectasia

Clinical example cases: Pre Operative

SLAK in post-SMILE ectasia: clinical case (6 months post)

6 months post SLAK SE -6 UCVA 20/63 BCVA 20/32

- Significant reduction of central corneal curvature and elevation
- ✓ Improvement of residual SE and UCVA/BCVA
- ✓ Significant improvement of CCT

Post-SMILE ectasia: Restoring thickness by re-implanting a positive meniscus lenticule similar to the one removed at the time of surgery

SLAK in post-SMILE ectasia: clinical case (post)

SLAK in KK 5 years follow-up

BCVA pre-surgery: 20/50 sph -1,75 cyl -3,75 ax 105°

BCVA post-surgery: 20/20 sph -0,50 cyl -1,50 ax 95° Severe ulcerative keratopathy following implantation of an acellular porcine corneal stromal lenticule in a patient with keratoconus

Tim Berger ^{a, *}, Ursula Schlötzer-Schrehardt ^b, Fidelis Flockerzi ^c, Loay Daas ^a, Elias Flockerzi ^a, Berthold Seitz ^a

^a Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany ^b Department of Ophthalmology, University of Brlangen-Nürnberg, Brlangen, Germany ^c Institute of Pathology, Saarland University Medical Center, Homburg, Saar, Germany

2024

Bioengineering of human stromal lenticules: the new frontier

hCLs engineered with rhNGF-microparticles (rhNGF-MPs)

 11.8 ± 3.5

 192.6 ± 20.5

SDS 0.1%

 24.5 ± 3.4

 1.2 ± 1.7

87.0±5.2

hCLs engineered with rhNGF-microparticles (rhNGF-MPs)

hCLs engineered with rhNGF-microparticles (rhNGF-MPs)

In vitro kinetic release of rhNGF from engineered decellularized hCLs

In vitro biological activity of rhNGF released from engineered decellularized hCLs

RESULTS IN VIVO (I)

In vivo implantation of rhNGF-MPs bioengineered hCLs

RESULTS IN VIVO (II)

Central Corneal Thickness – Anterior Segment Opthical Coherence Tomography (ASOCT)

Time point	NC	Blank-MPs	rhNGF-MPs	<i>p</i> -value ²	Sig. level
Baseline	1.00 ± 0.00	1.02 ± 0.02	1.00 ± 0.02	0.384	n 5
4 hrs.	1.00 ± 0.00	1.20 ± 0.04	1.26 ± 0.09	0.267	ns
Day 2	1.00 ± 0.00	1.10 ± 0.09	1.14 ± 0.08	> 0.999	ns
Day 7	1.00 ± 0.00	1.07 ± 0.06	1.10 ± 0.05	0.888	ns
Week 2	1.00 ± 0.00	1.09 ± 0.03	1.08 ± 0.05	> 0.999	ns
Week 3	1.00 ± 0.00	1.20 ± 0.06	1.15 ± 0.05	0.427	n 5
Week 4	1.00 ± 0.00	1.13 ± 0.04	1.09 ± 0.08	0.361	ns

RESULTS IN VIVO (III)

Corneal Nerve Regeneration – In Vivo Confocal Microscopy (IVCM)

Comparisons between the blank-MPs group and the rhNGE-MPs group

Unpublished data

EX VIVO MACULAR HOLE MODEL

Domitilla Mandatori, Rodolfo Matropasqua, M. Nubile

Possible therapeutic applications

RhNGF microparticles embedded in decellularized lenticules is an efficient method to achieve greater concentrations of drug substances, for an extended period of time, in diseased corneas, paving the way for combined surgical and medical therapy

Hypothetically, every kind of eye drug substances can be included in such lenticules, not only for corneal therapy, but also for other ocular diseases

SMILE derived lenticules (from over 6 milion refractive procedures, as in 2022) can drastically improve the shortage of transplantable corneal tissues and can be stored in eye banks

A crucial point is proper tissue preservation, and cryopreservation represents a valid method for long term storage that maintains lenticule vitality

Creation of a lenticule bank to collect, catalog, process, cryopreserve and distribute the lenticules could be advantageous, safe and feasible

Preservation of corneal stromal lenticule: review

Martina Nemcokova 🔄 Jakub Dite, Yun Min Klimesova, Magdalena Netukova & Pavel Studeny.

Andri K. Riau 🝺 🖂, Kenny P.Y. Boey, Nur Zahirah Binte M. Yusoff, Tze-Wei Goh, Gary H.F. Yam, Kin F. Tang, Catherine S.H. Phua

Hui-Jun Chen, Yoke F. Chiew, Yu-Chi Liu, and Jodhbir S. Mehta 🖂

Published Online: 17 Jan 2022 https://doi.org/10.1089/ten.tea.2021.0042